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Abstract

This article shows what sort of discrete and analog elements are present in quan-
tum mechanics itself. For this, we form quantum mechanics postulates connecting
Stern-Gerlach, double-slit and EPR experiments. Which brings us to suggestion of
how quantum and spacetime phenomena should be linked to settle a question about
continuity of space, the major analog aspect of reality as we understand it today.

“Is Reality Digital or Analog?”

In approaching this broad question, let us clarify its scope, so that we can make brief
arguments within allotted length for this essay.

When we use word digital to describe a device, it means that key functional aspects of
a device are characterized by discrete variables that can be manipulated by discrete mathe-
matics. And we use word analog, when key functional aspects of a device are characterized
by continuous variables that can be manipulated by calculus. In the same manner, we will
be able to say whether reality is digital or that reality is analog, if all fundamental aspects
of reality are characterized either by discrete or by analog variables, respectively.

Let’s then begin our survey of fundamental elements of reality, starting with matter.

1 Spin of fundamental particles

Fundamental particles, like electron and photons, have spin. Spin is an intrinsic charac-
teristic applicable to any fundamental particle. Value of spin is s = n/2, where n is a
non-negative integer. Hence, allowed values are s = 0, 1/2, 1, . . ..

Standard Model tells us a story of what sort of particles are there in reality. According
to it, there is a bunch of fermions, like electron, that have spin s = 1/2. There is a bunch
of bosons, like photon, that have spin s = 1. And LHC is on the hunt for predicted Higgs
boson, that has spin s = 0.
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To describe spin, we use discrete numbers. Therefore, phenomena of spin can be said
to be of digital nature. But does everything related to spin have to be digital?

2 Stern-Gerlach experiment

Spin phenomena is commonly demonstrated by Stern-Gerlach experiment.
This experiment is arranged as follows. There is an electron gun that fires electrons

with the same speed, in the same direction. Velocity (speed and direction) is the only set
characteristic of produced electrons. Other characteristics like spin can be anything.

Electrons are fired and will follow a straight line, if unimpeded. When a magnetic field
is set in electrons’ path, electrons are deflected from a straight line, and follow two distinct
trajectories.

Relation of these trajectories to spin can be explained in two ways. One is a usual
description from a textbook, or from a provided above link. Usual description goes in step
with a historical development of theories. The other way to describe what happens with
electron in the magnetic field, is in terms of current fundamental theories. And at least
out of curiosity, let us follow the second, less travelled route.

Quantum Electrodynamics (QED for short), is a part of Standard Model, and it de-
scribes electrons and photons. According to QED, magnetic field in Stern-Gerlach experi-
ment, is a sort of sea of photons. Electron’s interaction with a magnetic field is described
by “bounces” with photons. These bounces are characterized in QED by a vertex at which
photon is either absorbed or emitted by an electron.

Both electrons and photons are represented in QED by mathematical objects called
spinors, that account for spin states. Spinors of both electron and photon “meet” at
interaction vertex, which makes spins of both electron and photon coupled, or correlated.
And, with an arrangement of photons into a magnetic field, this correlation influences a
direction of electron’s motion depending on how its spin is correlated with spin of photons
in the field.

When an electron gun shoots electrons with any spin (denoted as |?〉el) into a field of
photons with some particular spin (|x〉ph), electrons split into exactly two groups, each
having a particular spin correlation with photons. These correlations can be called spin-up
(|x ↑〉el) and spin-down (|x ↓〉el) relative to given photon field (|x〉ph).

Keeping a record of number of electrons, we can write a process for field |1〉ph as

(N of |?〉el)
|1〉ph−→ (N1↑ of |1 ↑〉el) and (N1↓ of |1 ↓〉el) , (1)

where N = N1↑ +N1↓ (2)

If we send only |1 ↑〉el electrons into photon sea |2〉ph that is the same as the original
one |1〉ph, we’ll get only one group of electrons, and it will be again a spin-up group |2 ↑〉el.
Which means that an electron with a spin-up relation to a particular photon will show
the same spin-up relation to a photon that is similar to the initial one. This also implies

2

http://en.wikipedia.org/wiki/Stern-Gerlach_experiment
http://en.wikipedia.org/wiki/Quantum_electrodynamics


|2 ↑〉el = |1 ↑〉el. Altogether, we have

(N of |1 ↑〉el)
|2〉ph=|1〉ph−→ (N of |2 ↑〉el) = (N of |1 ↑〉el) (3)

But when we change a photon sea to |x〉ph 6= |1〉ph, we will change its orientation relative
to initial electrons. And electrons |1 ↑〉el in process of interaction with |x〉ph, will split again
into two groups:

(N of |1 ↑〉el)
|x〉ph 6=|1〉ph−→ (Nx↑ of |x ↑〉el) and (Nx↓ of |x ↓〉el) , (4)

where N = Nx↑ +Nx↓ (5)

Change of |x〉ph on experiment is done by way of rotating a magnetic field. And when
it is rotated, trajectories of |x ↓〉el and |x ↑〉el also rotate relative to the lab, but stay at
exactly same locations relative to the magnetic field. From this experimental observation
we conclude that |x ↓〉el and |x ↑〉el are completely defined by |x〉ph. Therefore, the only
way to characterize orientation between |x〉ph and initial |1 ↑〉el in (4) is by probabilities of
electron getting from an initial state into allowed states after the correlation:

P1↑→x↑ =
Nx↑

N
and P1↑→x↓ =

Nx↓

N
, (6)

P1↑→x↑ + P1↑→x↓ = 1 (7)

Experiment shows that repeating a process, with the same relative orientation of |x〉ph
and |1 ↑〉el, will yield the same values for probabilities P1↑→x↓ and P1↑→x↓. Therefore,
these probabilities characterize allowed by nature orientation between |x〉ph and |1 ↑〉el, or
between |1 ↑〉el and a pair |x ↓〉el, |x ↑〉el, since this pair is completely defined by |x〉ph.

With the notion of probabilities we may write (4) a bit more generally:

|ψ〉el
|x〉ph−→ (|x ↑〉el with Pψ→x↑) or (|x ↓〉el with Pψ→x↓) , (8)

Pψ→x↑ + Pψ→x↓ = 1 (9)

where degenerate cases like (3) are realized by

Pψ→x↑ = 1, and Pψ→x↓ = 0 for |ψ〉el = |x ↑〉el (10)

Pψ→x↑ = 0, and Pψ→x↓ = 1, for |ψ〉el = |x ↓〉el (11)

3 Hilbert space

Elements |ψ〉el, |x ↑〉el and |x ↓〉el are all states of electron, and can be thought as belonging
to one set of mathematical entities. Probabilities, as mathematical entities, belong to
numbers. To bring these two different mathematical things together into one structure, we
can introduce certain operations over the set of electron states and numbers.
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Working with statement (8), we may introduce a, so called, inner product between
elements of electron states set from both sides of a statement, denoted as 〈ψ|x ↑〉el and
〈ψ|x ↓〉el, which produces probability of getting from initial to final states as follows:

〈ψ|x ↑〉el ∼ Pψ→x↑ (12)

〈ψ|x ↓〉el ∼ Pψ→x↓ (13)

with degenerate cases like (10) leading to

〈x ↑ |x ↓〉el = 〈x ↓ |x ↑〉el ∼ 0 (14)

〈x ↑ |x ↑〉el = 〈x ↓ |x ↓〉el ∼ 1 (15)

Relations (14 – 15) look like scalar products between basis vectors in Euclidean vector
space. Similarly to our inner product, a scalar product in Euclidean space takes two vectors
from a set of vectors, and assigns a certain number to each pair.

Following a hunch that a relation between electron states may have a structure similar
to Euclidean vector space, we introduce axioms that are similar to those in Euclidean vector
space, which is an example of Hilbert space:

• Inner product between elements of the set gives a complex number1:
〈φ|ψ〉 = a

• Change of order in the product gives a complex conjugate result:
〈ψ|φ〉 = 〈φ|ψ〉∗ = a∗

• Linearity, which will later allow to express any vector in terms of basis vectors, using
a set of numbers, called coordinates:
〈φ|a · ψ + b · υ〉 = a 〈φ|ψ〉+ b 〈φ|υ〉
if we apply a complex conjugate to both sides and use a previous axiom, we get
〈a · ψ + b · υ|φ〉 = a∗ 〈ψ|φ〉+ b∗ 〈υ|φ〉

• Product of any vector with itself 〈φ|φ〉 = 〈φ|φ〉∗ = a = a∗ is a number that is equal
to its complex conjugate, making it a real number. So, we may add a condition
applicable to real numbers:
〈φ|φ〉 ≥ 0

Armed with these axioms, we can give some physical sense to a newly constructed
Hilbert space. 〈ψ|x ↑〉el is some complex number, while Pψ→x↑ is a real number, and to
connect the two, like in (12 – 13), we postulate:

‖〈ψ|x ↑〉el‖
2 = ‖cψ→x↑‖2 = cψ→x↑c

∗
ψ→x↑ = Pψ→x↑ (16)

‖〈ψ|x ↓〉el‖
2 = ‖cψ→x↓‖2 = cψ→x↓c

∗
ψ→x↓ = Pψ→x↓ (17)

1There is absolutely no significance in having complex numbers, except that real numbers will not satisfy
some requirements and uses of a constructed space. It is similar to the mathematical fact that a quadratic
equation always has solutions in complex numbers, of which a set of real numbers is just a subset.
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Relations (14 – 15) transform into equalities

〈x ↑ |x ↓〉el = 〈x ↓ |x ↑〉el = 0 (18)

〈x ↑ |x ↑〉el = 〈x ↓ |x ↓〉el = 1 (19)

On experiment, for any electron |ψ〉el, a photon field configuration |x〉ph can be found,
such that |ψ〉el = |x ↑〉el (a degenerate case). Then (19) forces

〈ψ|ψ〉el = 1, (20)

which is usually referred as normalization requirement. Product is connected to probabili-
ties, and probabilities should add up to 1. This leads to normalization requirement.

Let’s do the following manipulation with (20) and (9):

〈ψ|ψ〉el = 1 = Pψ→x↑ + Pψ→x↓

= c∗ψ→x↑cψ→x↑ + c∗ψ→x↓cψ→x↓

= c∗ψ→x↑ 〈ψ|x ↑〉el + c∗ψ→x↓ 〈ψ|x ↓〉el

since this must hold for any |ψ〉el, we may write

|ψ〉el = c∗ψ→x↑ |x ↑〉el + c∗ψ→x↓ |x ↓〉el (21)

From a purely mathematical side, decomposition (21) applies to all vectors in a space
because (18 – 19) provide a basis in a constructed space. And mathematical statements
(21) and (20) lead to correct sum of probabilities (9). It is a sort of opposite derivation
that simply highlights mathematical consistency.

We have constructed a Hilbert space to characterize initial electron states |ψ〉el in terms
of final electron states |x ↑〉el and |x ↓〉el that occur before and after the interaction with a
photon field in Stern-Gerlach experiment.

Allowed relative spin correlations are expressed by basis vectors like |x ↑〉el and |x ↓〉el,
ant their number is countable. Therefore, relative spin correlation is a digital phenomena.

Relative initial spin orientations between electrons |ψ〉el and photon field |x〉ph are cap-
tured by our Hilbert space (cause |x ↑〉el and |x ↓〉el are defined by |x〉ph). And since our
space is complete, a number of allowed relative spin orientations before interaction be-
tween an electron and photon field is uncountably large, requiring continuum treatment.
Therefore, relative spin orientation is an analog phenomena.

At this point we should recall that a change in relative spin orientation between an
electron and photons in field is done by rotation of a magnetic field in our three dimen-
sional space. Which lands two questions. First, do spacetime properties contribute to our
constructed space. Second, will we have to make our constructed space smaller (make it
incomplete in mathematical sense), if spacetime is found to be discrete. Depending on
answers to these questions, we may have to change our assertion about analog nature of
relative spin orientation. And, in order to raise questions about spacetime, we should
develop some more concepts about quantum mechanical phenomena.
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4 Quantum Mechanics postulates

4.1 Postulate I. Probabilistic nature of interaction

In the description of Stern-Gerlach experiment we cheated a little bit. We were talking
about electron only. We constructed a space of electron states. But we did not mention
that interaction between photon field and electron influences both. In particular, when
an electron changes its path from a straight line, it changes its momentum. As a result,
photons of a magnetic field take this little hit of momenta. And the whole interaction,
depicted by (8), should really look more symmetric:

|ψ〉el , |x〉ph −→
(
|x ↑〉el , |x↑〉ph with P el

ψ→x↑ = P ph
x→x↑

)
or

(
|x ↓〉el , |x↓〉ph with P el

ψ→x↓ = P ph
x→x↓

)
By the same token, to make a general postulate about nature of interaction, we should

incorporate all related sides.

Postulate I: When two systems ψ and φ interact with each other, they
undergo a transition from some initial states |ψinit〉 and |φinit〉 to final states
|ψj〉 and |φj〉, where only one of j possibilities may occur at a time with some
probability:

|ψinit〉 , |φinit〉 −→
⋃
j

(
|ψj〉 , |φj〉 with Pψ

ψinit→ψj
= P φ

φinit→φj

)
, (22)

where
∑
j

Pψ
ψinit→ψj

=
∑
j

P φ
φinit→φj = 1 (23)

We will say that states |ψj〉 and |φj〉 in each final pair are entangled with each
other as a result of interaction.

We should be able to construct state spaces, as we did in section 3, for both ψ and φ. And
when we do, we should fit these together, so that a) probabilities calculated on both sides
are equal for the same pair of final states, b) probabilities calculated on each of the side
add to one, and c) like in (18 – 19), final j vectors should be mutually orthogonal, and
respective init vectors should be decomposable in terms of these j vectors, similar to (21).

In section 3 we have constructed a space of electron states. But we haven’t done so for
photons in a magnetic field, that is generated by magnets, which are powered from electric
grid, etc. Photons in a Stern-Gerlach experiment are part of a complex system, and this
necessarily includes aspects addressed in the next postulate.
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4.2 Postulate II. Interaction confinement

Postulate I tells us what happens when two systems ψ and φ interact. But the world does
not consists of just two systems. Let’s then ask, what will happen to the process (22), if
we add some system Υ, which does not interact with neither system ψ, nor system φ.

If nothing happens, then we will rewrite (22) as

|Υ〉 (|ψinit〉 , |φinit〉) −→ |Υ〉

(⋃
j

(|ψj〉 , |φj〉 with Pj)

)
(24)

But what can possibly happen? Some philosophical considerations, based on everyday
experience of a classical world, may lead one to suggest that a choice of final states in
interaction of ψ and φ should be known to the rest of the world, i.e. to any other system
like Υ, even if it is not interacting with neither ψ nor φ. This suggestion can be depicted
as

|Υ〉 (|ψinit〉 , |φinit〉) −→
⋃
j

(|Υ〉 (|ψj〉 , |φj〉) with Pj) (25)

In the case of (25), any unsuspecting system, like Υ, gets entangled with final states of
interaction that happen between ψ and φ. Entanglement instantaneously spreads to the
rest of the world, without any regard that a system like Υ may be light-years away from ψ
and φ.

As nonlocal as option (25) sounds, the first option (24) may not be easy to swallow,
either. It says that any choice of final states shall stay confined to interacting systems.
A composite system (ψ, φ) does change its state as a result of internal interaction, but no
entanglement choices “leak outside” when there is no interaction with the rest of the world,
i.e. when (ψ, φ) is a closed system.

Can experimental evidence tell us which option nature itself prefers?
Let’s recall double-slit experiment. And let’s say that electrons are thrown one by one

at slits, with a subsequent interference pattern seen on the screen. In it, electron together
with slits, or rather material in which slits are cut, form a composite system like (ψ, φ).
Now, if (25) is correct, then a choice of a slit, through which electron passes, should be
known to the rest of the world, i.e. we should be entangled with this choice, even without
any interaction with the system. Then a little electron counting, done at each slit, should
make no difference, as it will only confirm an already known choice. Yet, it does, according
to an experiment. Therefore, option (25) is incorrect, and, by implication, option (24) is
preferred by nature.

Postulate II: When interaction occurs between subsystems of a closed
system, resulting entanglements between final states and choices thereof are
confined to the system.

In (24) composite system (ψ, φ) is “not loosing” any probability, as far as external system
Υ is concerned. Therefore, a state vector that describes closed system (ψ, φ) should keep
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the same unit length as it goes through its evolution. In other words, evolution of a closed
system is described by unitary transformation.

On a bit technical note, the following, dependent on a parameter t, operator Û is
unitary, when Ĥ is hermitian:

Û = exp

(
− i
h̄
Ĥt

)
(26)

It may describe a transformation of a state vector as a function of parameter t:

|ψ(t)〉 = Û |ψ(0)〉

Taking a t derivative will do the following:

∂

∂t
|ψ(t)〉 =

∂

∂t
Û |ψ(0)〉 =

∂

∂t
exp

(
− i
h̄
Ĥt

)
|ψ(0)〉

= − i
h̄
Ĥexp

(
− i
h̄
Ĥt

)
|ψ(0)〉 = − i

h̄
ĤÛ |ψ(0)〉 = − i

h̄
Ĥ |ψ(t)〉

Which turns out to be a Schrodinger equation with time-independent Hamiltonian Ĥ:

Ĥ |ψ(t)〉 = ih̄
∂

∂t
|ψ(t)〉 (27)

To be mathematically clean, a Schrodinger equation should actually be postulated. Yet,
above derivation shows that a) any further postulated or suggested evolution equation(s)
must be compatible with Postulate II by providing unitarity, b) infinitesimal change in
time is described by energy operator, and c) time comes into quantum mechanics as a mere
parameter that labels order of states.

5 Quantum correlations and spacetime

We have used Stern-Gerlach experiment to motivate Postulate I, and we used double-
slit experiment to formulate Postulate II. Yet, there is one more experiment that exposes
“weirdness” of quantum nature. Let’s consider here a situation, which is also used in EPR
paradox and in a practical experiment to test Bell’s theorem.

Two electrons are created in some interaction with opposite to each other spins. Details
of an interaction are not important, except that it obeys Postulate II.

Out of two possible correlations between electrons, only one with opposing spins is
allowed, and, from internal point of view, it happens with certainty.

Yet, relative to the rest of the world, or the lab, in particular, this system of two
electrons as a whole should have spin 0. Then a question arises, what will be seen, when
we try to determine spins of each particular electron.

To determine electrons’ spins, we can use Stern-Gerlach apparatus. It should be aligned
in some way, but there is no preferred orientation at all, cause a system of both electrons
has spin 0 as a whole.
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So, on experiment when the first electron is measured against some randomly chosen
orientation z, it produces spin-up |z ↑〉 and spin-down |z ↓〉 results with 50% probability.
When the second electron is tested, it produces for the same orientation exactly oppo-
site results with certainty (probability 100%), which is fully compatible with the initial
requirement that spins are opposite. Also 100% probability is attained only because a
correlation between the first electron and the lab sets a preferred orientation between pre-
viously closed system of electrons and the lab, relative to which both spins are aligned in
opposite directions.

This sounds perfect till we introduce an idea that all matter states and all interactions
happen inside relativistic spacetime, and, given enough spatial separation, it is impossible
to tell which of electrons’ measurement was the first to introduce preferred direction.

In this light, instead of saying that stuff happens in time and in space, may be, we
should define space and time in terms of matter states and interactions between them.

This is a relational approach to spacetime, which suggests that spacetime is a network
of relations between matter elements. And it can possibly be the right approach to bring
together quantum and spacetime descriptions in a consistent way, which may as well settle
the question of whether reality is ultimately digital or analog.
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